Search results for "NLO computation"

showing 10 items of 14 documents

Forward dijets in proton-nucleus collisions at next-to-leading order: the real corrections

2021

Using the CGC effective theory together with the hybrid factorisation, we study forward dijet production in proton-nucleus collisions beyond leading order. In this paper, we compute the "real" next-to-leading order (NLO) corrections, i.e. the radiative corrections associated with a three-parton final state, out of which only two are being measured. To that aim, we start by revisiting our previous results for the three-parton cross-section presented in our previous paper. After some reshuffling of terms, we deduce new expressions for these results, which not only look considerably simpler, but are also physically more transparent. We also correct several errors in this process. The real NLO …

High Energy Physics - Theorydijet: productionNuclear and High Energy PhysicsParticle physicsNuclear TheoryProton[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]splittingFOS: Physical sciencescollinearParton01 natural sciencesColor-glass condensateNuclear Theory (nucl-th)DGLAP equationHigh Energy Physics - Phenomenology (hep-ph)FactorizationfactorizationNLO Computations0103 physical sciencesRadiative transferEffective field theoryradiative correctionlcsh:Nuclear and particle physics. Atomic energy. Radioactivitypartonheavy ion phenomenology010306 general physicsp nucleus: scatteringPhysicsNLO computationshybrid010308 nuclear & particles physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]higher-order: 1Heavy Ion PhenomenologyGluonHigh Energy Physics - PhenomenologyDGLAPHigh Energy Physics - Theory (hep-th)kinematics[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]color glass condensatelcsh:QC770-798
researchProduct

Tree-Loop Duality Relation beyond simple poles

2013

We develop the Tree-Loop Duality Relation for two- and three-loop integrals with multiple identical propagators (multiple poles). This is the extension of the Duality Relation for single poles and multi-loop integrals derived in previous publications. We prove a generalization of the formula for single poles to multiple poles and we develop a strategy for dealing with higher-order pole integrals by reducing them to single pole integrals using Integration By Parts.

PhysicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsPure mathematics010308 nuclear & particles physicsGeneralizationPropagatorDuality (optimization)FísicaFOS: Physical sciencesExtension (predicate logic)QCD Phenomenology01 natural sciencesDuality relationLoop (topology)Theoretical physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)NLO Computations0103 physical sciencesIntegration by partsddc:530Tree (set theory)010306 general physics
researchProduct

Scalar particle contribution to Higgs production via gluon fusion at NLO

2007

22 pages, 5 figures.-- ISI Article Identifier: 000252243700095.-- ArXiv pre-print available at: http://arxiv.org/abs/0709.4227

Nuclear and High Energy PhysicsParticle physicsHigh Energy Physics::LatticeScalar (mathematics)Adjoint representationFOS: Physical sciencesProton-proton collisionsHiggs sectorHigh Energy Physics - Phenomenology (hep-ph)Supersymmetric spectraBoson productionNLO ComputationsHadronic CollidersPhysicsQuantum chromodynamicsGluinoLogarithmic correctionsHigh Energy Physics::PhenomenologyScalar bosonGluonHigh Energy Physics - PhenomenologyQCD correctionsSupersymmetry Phenomenology2-loop Electroweak correctionsHiggs bosonHigh Energy Physics::ExperimentHadron-hadron collisionsJournal of High Energy Physics
researchProduct

Space-like (vs. time-like) collinear limits in QCD: Is factorization violated?

2012

We consider the singular behaviour of QCD scattering amplitudes in kinematical configurations where two or more momenta of the external partons become collinear. At the tree level, this behaviour is known to be controlled by factorization formulae in which the singular collinear factor is universal (process independent). We show that this strict (process-independent) factorization is not valid at one-loop and higher-loop orders in the case of the collinear limit in space-like regions (e.g., collinear radiation from initial-state partons). We introduce a generalized version of all-order collinear factorization, in which the space-like singular factors retain some dependence on the momentum a…

High Energy Physics - TheoryNLO COMPUTATIONSNuclear and High Energy PhysicsHADRONIC COLLIDERSCiencias FísicasFOS: Physical sciencesPartonSpace (mathematics)01 natural sciences//purl.org/becyt/ford/1 [https]MomentumHigh Energy Physics - Phenomenology (hep-ph)Factorization0103 physical sciences010306 general physicsMathematical physicsQuantum chromodynamicsPhysics010308 nuclear & particles physicsFísicaCharge (physics)//purl.org/becyt/ford/1.3 [https]Scattering amplitudeAstronomíaHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)Gravitational singularityCIENCIAS NATURALES Y EXACTAS
researchProduct

From loops to trees by-passing Feynman's theorem

2008

We derive a duality relation between one-loop integrals and phase-space integrals emerging from them through single cuts. The duality relation is realized by a modification of the customary +i0 prescription of the Feynman propagators. The new prescription regularizing the propagators, which we write in a Lorentz covariant form, compensates for the absence of multiple-cut contributions that appear in the Feynman Tree Theorem. The duality relation can be applied to generic one-loop quantities in any relativistic, local and unitary field theories. %It is suitable for applications to the analytical calculation of %one-loop scattering amplitudes, and to the numerical evaluation of %cross-section…

PhysicsQuantum chromodynamicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsNLO computationsLorentz transformationFísicaFOS: Physical sciencesPropagatorDuality (optimization)Field (mathematics)QCDScattering amplitudesymbols.namesakeHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)symbolsFeynman diagramCovariant transformationMathematical physics
researchProduct

Single bottom quark production in kT-factorisation

2015

Journal of High Energy Physics 2015.9 (2015): 123 reproduced by permission of Scuola Internazionale Superiore di Studi Avanzati (SISSA)

PhysicsQuarkNuclear and High Energy PhysicsParticle physicsLarge Hadron ColliderHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyFOS: Physical sciencesFísicaJet (particle physics)QCD PhenomenologyBottom quarkGluonHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)FactorizationNLO ComputationsVertex (curve)RapidityHigh Energy Physics::ExperimentNuclear Experiment
researchProduct

Heavy quark impact factor in kT-factorization

2013

We present the calculation of the finite part of the heavy quark impact factor at next-to-leading logarithmic accuracy in a form suitable for phenomenological studies such as the calculation of the cross-section for single bottom quark production at the LHC within the kT-factorization scheme.

PhysicsQuarkNuclear and High Energy PhysicsParticle physicsLarge Hadron ColliderLogarithm010308 nuclear & particles physicsHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyFísicaFOS: Physical sciencesQCD Phenomenology01 natural sciencesBottom quarkHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)FactorizationNLO Computations0103 physical sciences010306 general physics
researchProduct

Double collinear splitting amplitudes at next-to-leading order

2013

We compute the next-to-leading order (NLO) QCD corrections to the $1 \to 2$ splitting amplitudes in different dimensional regularization (DREG) schemes. Besides recovering previously known results, we explore new DREG schemes and analyze their consistency by comparing the divergent structure with the expected behavior predicted by Catani's formula. Through the introduction of scalar-gluons, we show the relation among splittings matrices computed using different schemes. Also, we extended this analysis to cover the double collinear limit of scattering amplitudes in the context of QCD+QED.

High Energy Physics - TheoryNLO COMPUTATIONSNuclear and High Energy PhysicsParticle physicsHADRONIC COLLIDERSCiencias FísicasFOS: Physical sciencesContext (language use)01 natural sciences//purl.org/becyt/ford/1 [https]Dimensional regularizationHigh Energy Physics - Phenomenology (hep-ph)Consistency (statistics)0103 physical sciencesLimit (mathematics)010306 general physicsMathematical physicsQuantum chromodynamicsPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFísica//purl.org/becyt/ford/1.3 [https]Scattering amplitudeAstronomíaHigh Energy Physics - PhenomenologyAmplitudeHigh Energy Physics - Theory (hep-th)Cover (topology)CIENCIAS NATURALES Y EXACTASJournal of High Energy Physics
researchProduct

Two-Loop Planar Corrections to Heavy-Quark Pair Production in the Quark-Antiquark Channel

2009

We evaluate the planar two-loop QCD diagrams contributing to the leading color coefficient of the heavy-quark pair production cross section, in the quark-antiquark annihilation channel. We obtain the leading color coefficient in an analytic form, in terms of one- and two-dimensional harmonic polylogarithms of maximal weight 4. The result is valid for arbitrary values of the Mandelstam invariants s and t, and of the heavy-quark mass m. Our findings agree with previous analytic results in the small-mass limit and numerical results for the exact amplitude.

QuarkNuclear and High Energy PhysicsParticle physics530 PhysicsHigh Energy Physics::LatticeFOS: Physical sciencesHarmonic (mathematics)10192 Physics Institute01 natural sciencesCross section (physics)High Energy Physics - Phenomenology (hep-ph)NLO Computations0103 physical sciencesHeavy Quark PhysicsLimit (mathematics)3106 Nuclear and High Energy Physics010306 general physicsPhysicsQuantum chromodynamicsAnnihilation010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyHigh Energy Physics - PhenomenologyPair productionAmplitude[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experiment
researchProduct

Triple collinear splitting functions at NLO for scattering processes with photons

2014

We present splitting functions in the triple collinear limit at next-to-leading order. The computation was performed in the context of massless QCD+QED, considering only processes which include at least one photon. Through the comparison of the IR divergent structure of splitting amplitudes with the expected known behavior, we were able to check our results. Besides that we implemented some consistency checks based on symmetry arguments and cross-checked the results among them. Studying photon-started processes, we obtained very compact results.

High Energy Physics - TheoryNLO COMPUTATIONSNuclear and High Energy PhysicsParticle physicsPhotonCiencias FísicasComputationFOS: Physical sciencesContext (language use)01 natural sciences//purl.org/becyt/ford/1 [https]High Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsQuantum chromodynamicsPhysics010308 nuclear & particles physicsScatteringFísica//purl.org/becyt/ford/1.3 [https]Symmetry (physics)AstronomíaMassless particleHigh Energy Physics - PhenomenologyAmplitudeHigh Energy Physics - Theory (hep-th)CIENCIAS NATURALES Y EXACTASJournal of High Energy Physics
researchProduct